Holomorphic functional calculus on upper triangular forms in finite von Neumann algebras

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Various topological forms of Von Neumann regularity in Banach algebras

We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...

متن کامل

various topological forms of von neumann regularity in banach algebras

we study topological von neumann regularity and principal von neumann regularity of banach algebras. our main objective is comparing these two types of banach algebras and some other known banach algebras with one another. in particular, we show that the class of topologically von neumann regular banach algebras contains all $c^*$-algebras, group algebras of compact abelian groups and cer...

متن کامل

Integer Operators in Finite Von Neumann Algebras

Motivated by the study of spectral properties of self-adjoint operators in the integral group ring of a sofic group, we define and study integer operators. We establish a relation with classical potential theory and in particular the circle of results obtained by M. Fekete and G. Szegö, see [Fek23,FS55,Sze24]. More concretely, we use results by R. Rumely, see [Rum99], on equidistribution of alg...

متن کامل

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

متن کامل

Torsion Theories for Finite Von Neumann Algebras

The study of modules over a finite von Neumann algebra A can be advanced by the use of torsion theories. In this work, some torsion theories for A are presented, compared and studied. In particular, we prove that the torsion theory (T,P) (in which a module is torsion if it is zero-dimensional) is equal to both Lambek and Goldie torsion theories for A. Using torsion theories, we describe the inj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Illinois Journal of Mathematics

سال: 2015

ISSN: 0019-2082

DOI: 10.1215/ijm/1475266410